Rings Graded By a Generalized Group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group - Graded Rings and Duality

We give an alternative construction of the duality between finite group actions and group gradings on rings which was shown by Cohen and Montgomery in [1]. This duality is then used to extend known results on skew group rings to corresponding results for large classes of group-graded rings. Finally we modify the construction slightly to handle infinite groups. Introduction. In the first section...

متن کامل

Group rings satisfying generalized Engel conditions

Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1)  y]=[[x ,_( n)  y]  , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y)   ,_( n(x,y))  y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...

متن کامل

GENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

متن کامل

Generalized Burnside rings and group cohomology

We define the cohomological Burnside ring B(G,M) of a finite group G with coefficients in a ZG-module M as the Grothendieck ring of the isomorphism classes of pairs [X, u] where X is a G-set and u is a cohomology class in a cohomology group H X(G,M). The cohomology groups H ∗ X(G,M) are defined in such a way that H∗ X(G, M) ∼= ⊕iH∗(Hi,M) when X is the disjoint union of transitive G-sets G/Hi. I...

متن کامل

On the Jacobson radical of strongly group graded rings

For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Algebra and its Applications

سال: 2014

ISSN: 2299-3231

DOI: 10.2478/taa-2014-0005